Calculation policy: The LETTA Trust

Purpose of a calculation policy

- About ensuring a consistent approach across the school, with each year group building upon the strategies and layout used in previous year groups.
 what they have already learnt

Key parts of our approach:

Concrete, Pictorial, Abstract approach

- We do not believe that children 'graduate' from concrete, to pictorial and finally to abstract; instead, children should be exposed to the pictorial and concrete alongside the abstract strategy they are learning.
- 'From concrete manipulatives and experiences, students are guided to uncover abstract mathematical concepts or results... The role of the teacher is that of facilitator, who guides students through the concrete, pictorial and abstract levels of understanding by providing appropriate scaffolding and feedback.' - Ministry of Education. 2012 The focus is on ensuring children have an understanding of the mathematics the sits behind the strategy, rather than on finding answers - Askew, M. 2012

Therefore:

In lessons: teachers should model solving using the concrete and pictorial alongside the abstract calculation - this enables children to see the underlying concepts. Using the visualiser here really helps.
In books: children should be expected to draw the pictorials (or use already-printed ones first) alongside solving the abstract until they are confident in the maths (this means having the ability to explain their understanding, not just getting answers correct).

Key vocabulary: exchange
Can we exchange any ones?

Year 1:

	concrete	pictorial	abstract
To represent and use number bonds and related subtraction facts within (and including) 10 Number bonds of 5, 6, 7, 8, 9, 10	Cubes Use to add two numbers together as a group or in a bar $4+3=7$ $10=6+4$ $8+1=9$	Part / whole method alongside images - Create your parts and label - Add altogether to find the whole $3+2=5$ 2 part Bar model	Part / whole model alongside all number sentences to move into the abstract $\begin{aligned} & 2+3=5 \\ & 3+2=5 \\ & 5=3+2 \\ & 5=2+3 \end{aligned}$
Counting: add 1 and 2 digit numbers within 20 including zero:	Bead string - Start with the larger number and then count on the next number 1 by 1 $12+5=17$	Number line - Start at larger number - Count on in ones	$5+3=8$

	concrete	pictorial	abstract
Regrouping to make 10: add 1 and 2 digit numbers within 20 including zero	Bead string - Make larger number first - Use the smaller number to make 10 - Add the leftover amount $9+3=12$ Cubes - Make larger number on 10 frame - Use the smaller number to make 10 - Add leftover cubes in next 10 frame $6+5=11$ - $6+4=10$ - $10+1=11$	Pictorial - Group 10 - Count on what is left $\left\lvert\, \begin{aligned} 6+5 & =11 \\ - & 6+4=10 \\ - & 10+1=11 \end{aligned}\right.$ $\begin{aligned} & 6+4=10 \\ & 10+1=11 \end{aligned}$	$6+5=11$

Year 2:
To also understand: that addition is commutative

	concrete	pictorial	abstract
Column method without regrouping	Base 10 $17+32=$ Begin to introduce the formal column method layout by placing the numbers one on top of the other Create your two numbers using base 10 Add (group) the ones together - what do you have? Add (group) the 10 s together - what do you have? What is the total? Counters - Create your numbers - Add (group) the ones together - how many do you have? - Add (group) the tens together - how many do you have? $44+15=59$	After physically using the base 10 and counters, children can use drawings to build their understanding Again, count the ones first - how many do you have?	Formal written method here

	concrete	pictorial	abstract
Column method with regrouping	Base 10 - N.b. children will need to understand 10 ones is the same as 1 ten e.g. 14 ones is 1 ten and 4 ones $49+23=72$ Create both numbers on a place value grid - Add up the ones - when you have 10 , exchange for 1 ten and place in 10 s column - What is left? - Add up the 10 s - What is your total?	Drawing counters or base 10 to support understanding $49+23=72$	$\begin{aligned} & 40+9 \\ & \frac{20+3}{60+12}=72 \end{aligned}$
Adding three 1 digit numbers			

	concrete	pictorial	abstract
Using number line to cross the 10s / 100s barriers		Adding is 418 + 7 Adding 10s $583+50$	

Year 5 \& Year 6:

	concrete	pictorial	abstract
To add numbers with more than 4 digits	 abstract for greater than 4 digits	Embed from Y4	

Year 1:

	concrete	pictorial	abstract
Taking away ones	Counters / objects - Use to show how objects can be taken away	Drawn counters / objects - Cross out to show what has been taken away $4-2=2$	$4-2=2$
Counting back	Bead string - Make the starting number (minuend). Move the beads along the bead string as you count back in ones $13-4=9$	Number line / number track - Start at the minuend and count back in ones, showing the jumps on the number line	Put 13 in your head Count back 4 What number are you at? Use fingers to help
Find the difference	Cubes Use cubes to make towers or bars to find the difference	Number line - Find the two numbers you are finding the difference of - Count on from the smaller number to the bigger number Bar model - Draw simple comparative bar model to find the difference between 2 numbers example	

Year 2:
To also understand: subtraction is not commutative

	concrete	pictorial	abstract
To subtract numbers with up to 3 digits using formal method of column subtraction (exchanging and regrouping). Using inverse to check answers	Base 10 on place value grid - n.b. The example below is the final step in understanding in $Y 3$ $234-88=156$ Make starting number on place value grid Start with the ones. Can I subtract 8 from 4 ? No - I need to exchange 1 ten for 10 ones - I now have 14 ones Now 1 can subtract my ones 14-8=6 I can now look at my tens column. 30-80. I can't do that - I need to exchange 1 hundred for 10 tens. I now have 120-80=40 I am not taking any hundreds away from my hundreds column so my answer is 146	Base 10 and then move on to counters 364-38 = 326 - Make starting number (minuend) - Begin by subtracting the ones. If you cannot do this, exchange 1 ten for 10 ones - Then, move onto the tens column. Again, if you cannot subtract then exchange 1 hundred for 10 tens Children should get into the habit of checking their answers using the inverse (addition) operation	Year 3 example: note: when exchanging, the digit exchanged should be the same size (e.g. the 1 ten going into the ones column) Example with decimals: $\begin{gathered} 40 \frac{1}{10} 0 \frac{1}{10} \frac{1}{100} \\ 45.3-7.26=38.04 \\ T 0 . \frac{1}{10} \frac{1}{100} \\ 3 \times 15.2810 \\ -\frac{7.26}{38.04} \end{gathered}$

Calculation guidance: Multiplication

Year 1:

- Need to be able to count in 2, 5, 10

Understand that multiplication involves equal groups

	concrete	pictorial	abstract
To double numbers within 10 (then within 20)	Children can use fingers (join hands together to show doubles)	Complete the sentences. Use the pictures to help you.	
Recognise repeated addition and representing with multiplication equations (2,5, $10 \times$ tables)	Children should begin by building an understanding of counting in 25,5 and 10 s Using objects to add equal groups 7 lots of $2=2+2+2+2+2+2+2=14$ How many? (counting up in twos)	Children draw out objects $/$ counters to show the repeated addition	Children should write the addition sentences to describe the objects and pictures

	concrete	pictorial		abstract
Making arrays	Counters or cubes Sentences to support: There are \square counters in each row. There are \square rows. There are \square counters altogether.	Draw arrays in different rotations to find commutative sentences Complete the sentences. a) There are \square counters in each row. There are \square rows. There are \square counters altogether.		Use the arrays to write multiplication sentences and reinforce repeated addition $\begin{aligned} & 5+5=10 \\ & 5 \times 2=10 \end{aligned}$ $\begin{aligned} & 2+2+2+2+2=10 \\ & 2 \times 5=10 \end{aligned}$

Year 2:
By the end of $Y 2$, children should be secure in 2, 5, 10 times tables

	concrete	pictorial	abstract
Recognise repeated addition and representing with multiplication equations (2,5 , $10 \times$ tables) - Equal groups	Children should begin by building an understanding of counting in $2 \mathrm{~s}, 5 \mathrm{~s}$ and 10 s Using objects to add equal groups 3 groups of $3=3+3+3=9$ 3 groups of $5=5+5+5=15$	Children draw out objects / counters to show the repeated addition - illustrate on a numberline There are 3 equal groups of 2 $2+2+2=6$ Once embedded, begin to show the multiplication sentence alongside There are \square equal groups with \square in each group. \square $+$ \square $+$ \square $+$ \square $=20$ \square \times \square $=20$	When moving away from pictorial, ensure children continue to see the relationship between repeated addition and multiplication sentence: Complete the table. The first one has been done for you.

	concrete	pictorial			abstract
Arrays: Understand multiplication as number of groups with total unknown also understand multiplication is commutative	Create arrays using physical objects / cubes - How many rows? - How many in each row? - How many in cakes?	Continue concrete work with pictorials and counters. Build understanding of multiplication being commutative			$\begin{aligned} & 5+5=10 \rightarrow 2 \times 5=10 \\ & 2+2+2+2+2=10 \rightarrow 5 \times 2=10 \end{aligned}$
		Multiplication	Array 1	Array 2	
		3×8	:8:8:8:8:\%		
		2×5			

Year 3 \& Y4:

By the end of Y3, children should be secure in 2,5,10, 3, 4, 8 times tables
By the end of $\mathbf{Y 4}$, children should be secure in all times tables

	concrete	pictorial	abstract							
To recognise the effect of multiplying 1 digit numbers by 10 and 100	Children need to understand the relationship between ones, tens, hundreds and thousands. They can do this by seeing how many they need to exchange for the following power of 10 . E.g. - 10 ones is the same as 1 ten. Therefore 1 ten is 10 times the size of 1 one 1 ten is 10 times the size of 1 one 1 hundred is 10 times the size of 1 ten 1 thousand is 10 times the size of 1 hundred	Children should understand the effect of multiplying by powers of 10 by first using repeated addition to multiply numbers 10 times. - 1 exchange 20 ones for 2 tens Each row has 3 tens and 2 ones. Each row has 32 There are 10 rows. The calculation is $\underline{32} \times \underline{10}=$ \qquad - I exchange 30 tens for 3 hundreds - Inow have 320		-	+ \times + 4	1 0	$[x 10$	Thtu		00 $\left[\begin{array}{l} {[\times 10} \\ {[\times 100} \end{array}\right.$

As above, but including the following:

Year 6:
As above, but including the following:

Calculation guidance: Division

Year 1:

	concrete	pictorial	abstract
Making equal groups: grouping	Using objects around the room to put into equal groups - How many \qquad do I have altogether? - I need to put them into groups of \qquad - Make groups, counting out as you go - There are \qquad equal groups - I have 10 cubes altogether - I need to put them into groups of 2 - Make groups, counting out in twos - There are 5 equal groups	Drawing out pictures of objects into equal groups Moving into using sentence stems to explain the groupings: Complete the sentences. There are \square counters altogether. There are \square equal groups of \square counters.	
Making equal groups: sharing	Difference here is counting out one into each group at a time	$\begin{aligned} & 000000 \\ & 000000 \\ & 000000 \\ & 000000 \\ & 000000 \end{aligned}$ Share the counters between 2 friends. How many counters does each friend get? \square Children draw out counters, one at a time, into each group alternately	

Year 2:

- Children should be using their knowledge of times tables that they have been learning to support with understanding of division (and the relationship between the two) - Continue practising sharing and grouping before moving to numberlines

	concrete	pictorial	abstract
Understand division as dividing into groups of.. (quotative division)	As in Y 1	Children should understand the difference between sharing and grouping as strategies, but how they both get to the same answer Sharing There are 7 cubes in each group. $35 \div 5=7$ Grouping There are 7 groups of 5 $35 \div 5=7$	Using concrete / pictorial resources to support with solving number sentence questions a) $6 \div 2$ d) $0 \div 2$ g) \square $\div 2=9$ b) $10 \div 2$ e) \square $\div 2=5$ \square $\div 2=11$ c) $14 \div 2$ f) \square $\div 2=6$
Using a numberline		- I know that $25 \div 5$ can be worked out using my times tables knowledge. - I can count up in 5 s until I get to 25 . - $5,10,15,20,25 \rightarrow$ I have counted up in $5 s$ five times. - That means there are 5 lots of five in 25 . - So, $25 \div 5=5$ Could be filled in with children counting the intervals to scaffold - The aim is for children to develop an understanding that they can use their times tables to solve division questions	

Year 3:

- Continue to embed understanding of sharing and grouping, \& repeated addition, before moving on to the following method:

	concrete	pictorial	abstract
To divide 2 digit numbers by 1 digit numbers	- I am sharing 96 , so I need to create the number 9 tens and 6 ones - I am sharing it into 4 equal groups. - I start with the tens column. 9 tens shared into 4 equal groups is 2 in each group with one left over. I need to exchange that left over ten - I now have 16 ones to share into 4 equal groups - 16 ones shared into 4 groups is 4	$96 \div 4$ - I am sharing 96 into 4 equal groups. First, I will share my tens - 9 tens shared between four is 2 tens. There is one ten left over, so I need to exchange that for 10 ones आाITIT - I now have 16 ones. I share these into 4 groups. There are 4 ones in each group. - One group contains 2 tens and 4 ones. That is 24. So, $96 \div 4=24$	Note: this strategy requires children to have a secure understanding of standard and non-standard partitioning. This strategy lays the foundations for bus stop. $39 \div 3=$ - My whole is 39.1 am dividing by 3. First, I look at my tens. I know that 3 tens will divide by 3 , so I can partition my number as 30 and 9. $10+3=13$ $96 \div 4=$ - I notice that 9 tens will not divide equally into 4 groups. Therefore, I need to partition my number. I know that 80 divides into 4 , so I can partition my number as 80 and 16. $20+4=24$ - 80 divided into four groups is 20 - 16 divided into four groups is 4 - Therefore, 96 divided by 4 is 24

	concrete	pictorial	abstract
To divide 2 digit numbers by 1 digit numbers with remainders		- I know that dividing by 4 is the same as counting up in 4 s untill get to 25 .	Stick to pictorial and embed in Y3
		0 4 8 12 16 20 24 25 - There are 6 steps of 4.6×4 is 24 . There is one left over. - Therefore, 25 divided by 4 is 6 rl	
		Then move on to using counters	
		- I am sharing 73 into 3 equal groups. I start by sharing the tens. $\begin{aligned} & 73 \div 3=0000000 \\ & \hline 100 \end{aligned}$	
		- I know that I can share 6 tens equally into 3 groups. However, I have one ten that I can't share. Therefore, I need to exchange 1 ten for 10 ones $73 \div 3=$	
		00	
		OOP	
		- I now have 13 ones. I can share these into three equal groups	
		Tens	
		-0 0000	
		0$)$ 0000 0$)$ 0000	

Year 4:

	concrete	pictorial	abstract	
To divide whole numbers by 10 and 100 (sticking to whole number quotients)	$220 \div 10=$ - We need to see how many groups of ten are in 220 - We can count in 10s: - There are 22 groups of 10 . Therefore, $220 \div 10$ is 22 . - What do children notice?	H T 0 0 0 0 0 0 0$\| 000$ 2		2

Year 6:

